i J Solids Structures Vol. 33, No. 5. pp. 747-760. 1996
Copyright ¢ 1995 Elsevier Science Ltd
) Pergamon
2

Printed in Great Britain. All rights reserved
0020--7683/96 $9.50 + .00
0020-7683(95)00058-5

COMPUTATIONAL ASPECTS OF THE
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Abstract  Computational aspects of the logarithmic struin space description are discussed and
compared with so-called “updated Lagrangian descriptions™. The shortcomings of the latter are
demonstrated on an analytical example of homogeneous finite distortion kinematics. The numerical
implementation and algorithms of the logarithmic strain space description with respect to the
reference configuration are presented. Simulation results of two special purpose finite element
programs. which are based on the logarithmic strain space description, are shown.

NOTATION

The following definitions for second order tensors T are introduced and the Einstein summation convention
is adopted :

T transpose of T

T inverse of T

T "=(T H"=(TH inverse and transpose of T

T determinant ot T.

T, components ot T

T,=T.+T +T. trace of T

T=T-137,1 deviator of T (the second order unit tensor is denoted by 1)
Ti=yT,T, norm of 'F

Standard continuum mechanics notation ix used. as in Herduschke (1995):

Ky OT K reference or current configuration ot body B

Xorx position vector of a material point P in x, or &

! ume

x(X.1) mouon of body B in a reference description

F= (2; deformation gradient. F >0

C=F'F symmetric positive definite right Cauchy Green tensor with respect to &,
F=RU=VR polar decomposition of F

R orthonormal rotation tensor

U= Cor V= \ FF! svmmetric positive definite right or left stretch tensor with respect to x, or £
e=In(U)oré=In(¥) logarithmic strain tensor with respect to x; or £

X velocity of a material point P

G= i_—: velocity gradient with respect to kX

D=12G-G" rate of deformation tensor with respect to K. symmetric part of G

D = R'DR svmmetric back-rotated rate of deformation tensor with respect to k,
& logarithmic strain rate with respect to w,

i = RéR' logarithmic strain rate in & co-rotated with respect to the material

T ) symmetric Cauchy stress with respect to &

T =R'TR symmetric back-rotated stress with respect to &,

g =2aT symmetric logarithmic stress with respect to , (work-conjugate to g)
o Kmematical fourth order transformation tensor

B mverse to 2. 1.6, aff = fa = I (fourth order unit tensor)

Under superposed rigid body rotations the tensors with respect to the current configuration &, which are marked
with a superscript hat. are altered. whercas the tensors with respect to the reference configuration x, are not.

1. INTRODUCTION

The logarithmic strain space description is well-suited to describing finite (elasto-)plasticity,
as discussed analytically by Heiduschke (1993}, In the work presented we focus on the
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computational aspects ol the logarithmic stram space description and its numerical
implementation. By means of an example of homogencous finite distortion we compare the
logarithmic strain space description with so-called “updated Lagrangian descriptions™.
This example calls into question the general applicability of updated descriptions.

We follow the general thermodynamical framework of Green and Naghdi (1963) and
the strain space setting of Naghdr and Trapp (1975). where the yield (or loading) functions
are formulated with Green Lagrange strains. which we replace by logarithmic strains.
According to Cusey and Naghdi (1983, we recall the non-equivalence of stress space and
strain space formulations. and according to Naghdi (1990. p. 337). the primacy of the strain
space deseription. We suggest an elasto-plasucity description in the logarithmic (or Hencky)
strain space with respect Lo the reference configuration. which includes elastic and plastic
anisotropy. In line with Green and Naghdi (1963) and Naghdi and Trapp (1975), we
postulate the existence of w fogarithmic plastic strain tensor &” with respect to the reference
configuration «,.. For a stress-free state  in the generalized sense of Casey and Naghdi
(1992)- the logarithnue plastie straan tensor ¢ is identical with the total logarithmic strain
tensor & with respect to the reference configuration w,. The evolution of the plastic strain is
described by a rate equation. namely the plasue flow rule. We use the summation convention
on repeated indices and detine the stross power

as the iner product of the foganithmie stram rate & and the logarithmic stress o. The stress
power may be additvely split e an irreversible (plastic) contribution

defined by the inner product of the loganthnie plastic strain rate ¢ and the logarithmic
stress o and the remaining reversible (clasucy contribution

P pep oy *43_‘;/)- (1)

where Wie. ¢) denotes the stram enerey tunction. For convenience and in the light of the
latter ecquation. the abbreviation

may be denoted as “elastic stramm & the tensor ¢ with respect to the reference configuration
Ky 18 not defined via any multiphicatne clasto-plastic decomposition of the deformation
gradient. it is simply the abbreviation (2). namely the difference of the finite logarithmic
strains & and &". Furthermore. for metals & is o back-rotated infinitesimal strain, as the
correspanding logarithmic stress components
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are orders of magnitude smaller than the modulus of elasticity.

[t should be emphasized that, m contrast to the large body of finite element literature,
we do not use the following :

(1) The plastic stram detimition ol Simo (1988a.b) and Eterovic and Bathe (1990),

where the elastic stramn wenser s delined as Jogarithmie strain and where then the
abbreviation

aos e gt
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Is introduced i contrast to egn (). wiere ¢ s defined by £ and &". Since for
metals the “elastc stram™ i~ an “mbinnesimal stram™. all generalized finite strain
tensors with respeet to the reference configuration w, |see Doyle and Ericksen
(1956) . Hill (1968)]. including the logarnthnue strain. are equal up to the first
order. They are back-rotated “infimiesimal siraon™ tensors so that the definition
of Togarithmic “elustic strain™ o Sine (IxSacb)y and Eterovie and Bathe (1990)
loses its significance

(2) So-called ~updated Lagrangran desciiptions . where the rate of deformation tensor

D-b D (4)

or associated quanuties are spht o clastic and plastic contributions denoted by
the superseripts ¢ and p. respectively - The components ol the plastic contributions
are ntegrated (somehow co-rotwtionallvy and with the elastic contributions
incremental stress strain relations are tormulated |see. e.g. Goudreau and Hall-
quist (1982): Nagtegaal (119821 : Hughes t19nd)] The questions of appropriate ten-
sor derivatives have been discussed evtensivels. even though the tensor derivative
co-rotated with respect 1o the material is woll-detmed by Dovle and Ericksen (1956).

(3) A non-unique multiphcannve clasto-plasae Jdecomposition of the deformation
gradient

—
—
wn

in contrast 1o Nemat-Nasser (19825 Oty N7y Simo (1988a.b). Eterovic and
Bathe (1990). Weber and Anand (1990) and many other publications on numerical
methods. The muluplicative decomposiiion fegn (3] was introduced by Kroner
(1960) and discussed turther by Backiman 11vedy and Lee and Liu (1967). The
non-uniqueness of the decomposition €31 0 has been pointed out by Lee (1969)
and others.

(4) Stress space descriptions ol elasto-plasticiin . wnere stresses are used as independent
variables i order to express vield tuncoons. flow and hardening rules.

(3) Elasto-plastic  constitutne models formuated  without  vield  (or  loading)
conditions, as introduced by Bodner (19051 1 o mulu-dimensional formulation.
Questions about the numerical treaument or these models are covered by Ortiz
(19871, Weber und Anand ¢1990). and the reterences cited therein,

20 COMPARISON OF bbEERENT DESC R Cirss T~ TOR PINITE ELEMENTS

In order to compare ditferent descripiiors g~ o0 the tinite element method we study
an analytical example of homogencous Binite disiorizon kmematios - ¢f. the third example
of Heiduschke (1995} where the current coordiio

, R
T i

\ ‘ \\«‘\i:/) Y s '-‘j/“‘i‘”\;‘l. /]
T ;o
Coe \\m{w/}>)m\f”ljc\"p[ /_) (6)

are functions of the relerence coordinates v v v e 2 e Figs | othe deformation

&

=0 15 0 35 o 75 90°

D <D < << = =

Fig. 1. Homogencous timite distortion kenenidios. wheve the associted generalized finite strains
with respect to the reterence contigtration Sune Chanoine principal directions.
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process (6) of a unit square in the referencc configuration (at r = 0) is shown at times or
corresponding angles of rigid body rotation

t

3;::0, "1 or ¢=0.15.30",45,60,75,90",

ol —
b
>

I
30

> —

respectively. The generalized finite strains with respect to x,. which result from eqn (6),
have changing principal directions so that the logarithmic strain rate and the back-rotated
rate of deformation tensors with respect to k, are not identical

D=2t and &= gD (7N

or. equivalently, the kinematical fourth order transformation tensors « and g, are in general
not fourth order unit tensors ; see Heiduschke (1995).
We consider the time steps

where n. N and T denote the number of the current increment, the total number of
increments and the length of the considered time interval, respectively, and denote current
time steps by upper left indices. The components of "F, "R, "V, "U, "¢, "¢, "D and "D are then

nh o ' n\ . [mn
(N)(.os (2}\/) exp lr)sm N

r
| exp
Hf" p— 8
! ny\ . [mn n be7] ®)
CXp| — V)sm ,,E, exXpl — TV Cos EJ’V
OB . [mn
Ccos 5 V) —sin N
”Rl/ - \ . s
. n pid7]
sin ( _,) COS <7E>
"o
exp \") 0
t l{’” —_— ( ’1 . n L{VIJ — HR‘IH VIIII R,J’
e el
na l () ’I 12 n inaon
8{/ = [0 o 1} ‘I\__;‘ Gpp = R[[ 81/ R/J- (9)
i ] ¢ (2
| e -5 Tsmh —
n lj,, _ \ - ‘ ”D]J — ”R,I”D.,/”R,j
h 2m) |
27\ W T

and the components of the time derivatives of the logarithmic strain tensors co-rotated
with respect to the material are
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( 1 n n}
N T TN
g, = i T n | . e, ="R,)€R,,.
TN T
L i

We define the following integrals, approximated by the sums of the midpoint rates, which
are indicated by the index shift n+0.5: the integral of the logarithmic strain rate with
respect to K,

I = sdr = 1 i (10)

the integral co-rotated with respect to the material of the logarithmic strain rate with respect
to K

I'=RIR": (1)

the integral of the components of the back-rotated rate of deformation tensor with respect
o Ky

b A \7\‘ . ’]
I"=1| Ddr= ‘ :

I0
“
<
ro

and the integral of the components of the rate of deformation tensor with respect to &

~

! N \“ _l
' Ddr= ¥ "D (13)

For a material description. the latter integral (13) makes no sense. since the components
D,, which are altered under superposed rigid body motions. are only time-integrated.
Hence. the integral (13) depends on superposed rigid body rotations and, in general. it is
not identical to R I” R”, the corresponding integral co-rotated with respect to the material.
The integral (13) is introduced for reasons of a negative comparison. Furthermore, the
following updated strain increments—as they appear in the so-called “updated Lagrangian
description™ [see, e.g. Goudreau and Hallquist (1982) : Nagtegaal (1982) ; Hughes (1984)]—
are expressed by the deformation gradients of the current “* 'F and previous time steps “F
[egn (8)] : the small-strain increment+

AEY = '(CTFF U4 F U F) 1.
the midpoint-strain increment -—as defined for = | 2in eqns (93)-(96) of Hughes (1984)—
CAEM = ("'F'F D 'F'F T+ ) OTFE + ) TFT T ET 1)
and the Green- Lagrange strain increment—as detined in eqn (9) of Nagtegaal (1982)—

"AEY = ("F VUFYCOFF L.

tThe Cartesian components of the small-strain mcrements 1t expressed by the displacements w, of the updated
configurations-—are AF® = [« +u ).
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The sums which are associated with the updated strain increments AES, AEM, AES are
defined by

Al A N—1
ZS _ Z ”AES. ZM — Z ”AEM, EG = Z ”AEG, (14)

n=1>0 n=0 n=0

respectively. We consider the deformation process depicted in Fig. 1 for a time interval of
T =1 s and a discretization of N = 90 time steps so that the rigid body rotation is 1° per
increment. We compare the xx, x1 and vy components and the norm of the quantities (9)-
(14) as depicted in Figs 2-5.

Equations (9)—(14) can be divided into four groups:

G1: e I'. The logarithmic strain tensor with respect to k, is the basic reference of the
comparison presented. The integral I of its rate is identical to the tensor e.

Fig. 2. Comparison of the xx components.

0.5¢
A B I,I()y,'/
Exy =l =0 O
40 60 .46
-0.5¢ &y =Ixsy
-1l N
S
i 25 D, dt
-1 M
ny
-2 Zgy\

Fig. 4. Comparison of the 31 components.
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G2 & 1. The toganthmic strain tensor with respect 1o # 1s introduced as reference for
tensors with respect to v [t should be noted that the defintion of its rate and integral are
based on & und I . respectively. Therefore rate and integral are termed ““co-rotated with
respect to the material™. The mtegral I s idenucal 1o the wensor &,

G3: 1Y The time-integral of the back-rotated rate of deformation tensor with respect
1o ~, reveals characteristics sinnlar to those of & However. due to ¢qn (7). its components
and norm deviate from the exact solution. The ntegral P depends not only on the current
and reference configurations. but also on the path =+

G4: % XM XU (Ddr. The sums of the strain increments (14) of so-called “updated
Lagrangian descriptions” graphically behaves like _|'lA)<|/~ the component-wise time-integral
of D. In particular. their shear component (see Fig. 3y and thewr norm (see Fig. 5) totally
differ from & which they are supposed o approximate. The sums Y. EM £¢ depend not
only on the current and reference configurations: they ure path-dependent quantities which
cannot be approximations ol generalized fintte stram tensors (with respect to the current
configuration 11,

The kinematic example presented above can be mterpreted with respect to the log-
arithmic plastic strain tensor &" Plastic strain should depend only on the current and
reference stress-free configurations. in the generalized sense of Casev and Naghdi (1992).
In rate-type theories the plasue stram & s time-integrated from its rate. which is given by
the plastic flow rule. For nad plastic material. where total and plastic (logarithmic)
strain tensors are identcall & = &" the example presented above can be used to compare
integrals sums of different plasuce flow increments. namely éAr. DAz, DA/ AE,. AEy. AE,.
[t turns out that from the corresponding integrivs sums only I or its rotation to the current
configuration I result i ¢ or & respectively. The other integrals sums 1 X5 M 26 {Ddr
which are used in so-called “updated Lagrangran descriptions™. result in neither € nor é.

They result in so-called mternal varables. which cannot be regarded as plastic strain tensors
in the sense of &7 or &7 = Re'R' tsee Figs and &)

FOGARTTHNIC STRAIN SPACT AFGORITTHMS

A constitutive algorithm based on the logarithnmie strain space will not have the
shortcomings of updated deseriptions. which have been discussed in the previous example.
Furthermore. logarithnie stram tensors have the following features [see Heiduschke
(1995} traces and deviators of logarithmic straim tensors deseribe finite dilatation and
finite distortion. respectively Henee. by using logarithmic strains the finite dilatation and
distortion can be addinnvely decoupled. plastic mcompressibihty can be introduced by

FThe deviauons depreted o bigs 209 Gre not of &onumenicae natute 1o e pot primanly derive from the
discretization N The deviat:ons are of phyvsical natare and appear even tor N« s

PThe sum X0 Fres 2 ane J shows i asmall way the mttue see T 2he nor-summetric [ension compression
characteristics of the meremental Green Lagrange strane s intluence s ol o numerical nature and disappeurs
for finer time-discretizations
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ng=0

Fig. 6. Yield surface in the strain space at the previous and current time steps.

enforcing the plastic logarithmic strain &” to be deviatoric and a von Mises type of yield
functiont can be expressed by the second invariant of (¢ —¢°}, in analogy to the infinitesimal
deformation theory.

In general, the time-discrete constitutive algorithm follows from time-continuous
constitutive equations, which are described in the logarithmic strain space. In a logarithmic
strain space formulation the yield (or loading) function g(e, &°, k) depends only on the
symmetric total logarithmic strain &, the symmetric plastic logarithmic strain ¢ and the
hardening parameter(s) k. The yield surface g = 0 is a five-dimensional hypersurface boun-
ding a six-dimensional convex set in strain space as depicted in Fig. 6. For the discretization
we consider a yield function g which is monotonic in a suitable sensef—which also includes
a Tresca type of yield function. The constitutive algorithm is entered with the current total
strain "*'g, where the upper left index denotes the current time step. In the time-discrete
six-dimensional strain space the current total strain "* '¢ may li¢ inside the yield surface "¢
of the previous time step, g™ < 0, on it, g™ = 0, or outside it, g"* > 0, where the time-
discrete trial function is defined as ¢ = g("~'e.”¢"."k). In the first two cases, g™ <0,
which correspond to elasticity (or unloading) and neutral loading, no plastic flow occurs;
in the latter case, g™ > 0, plastic flow occurs. In the time-discrete strain space the inte-
gration of the elasto-plastic constitutive equations reduces to the (hyper)geometrical prob-
lem of finding the current yield surface "*'g = 0. which goes through "*'¢ such that the
plastic increment

Agh = """gh —"gP

obeys the flow rule, the hardening law and the consistency condition, ¢ = 0. An illustration
of an isotropic elasto-plasticity algorithm is presented in the Appendix.

It should be noted that no stress tensor is used for the integration of the constitutive
equations. If the stress is desired, it can be calculated at the end of the algorithm, i.e. after
the time integration of the constitutive equations. The logarithmic stress ¢ follows from
eqn (3). It may be transformed to Cauchy stress T using

T=RTR' and T = fo. (15)

4. IMPLEMENTATION INTO FINITE ELEMENT MODELS
In tsoparametric kinematic finite elements current and reference coordinates
X, = %vHy and X, = X, Hy (16)

+1n a von Mises type of vield function plastic flow occurs at a certain elastic distortional energy.
}Note. for instance, that the yield function g has a minimum as its only critical point.
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are interpolated with the same shape functions /1, - H (/). respectively, which depend only
on the local variables /. From the approximations (16) the components of the deformation

gradient
. A v X, CHO| . CHy,!
F, = = ’ = i, 17
X, ol [ cl ] Yo . l Vv cl, :| amn

and the velocity gradient

) AR UREPER ol IPARN I (M, H,,
6= -3 I8
oy L‘/\ ’ R {"" ol } (%)

can be calculated. The approximated deformation gradient (17) and velocity gradient (18)
are used in the following finite element algorithm. which must be applied in each time step
for each integration point of the finite element model

(1) Calculate the components " 'R, of the rotation tensor at the current time step * ™!

by using the approximated deformation gradient (17),

(2) Calculate the components " '¢, of the total logarithmic strain tensor ¢ = 1/2 In(C)
at the current time step ” ' by using a transformation to the principal axes and back again.
C = F' F and the approximated deformation gradient (17). Furthermore. determine the
coeflicients of “~ ' B as described by Heiduschke (1995).

(3) From the constitutive algorithm. which is formulated in the logarithmic strain
space and of which an example is presented in the Appendix (sce Fig. A2). find the current
plastic state. i.c. the components " '8 of the plastic strain tensor and the hardening
parameter " A,

(4) Calculate the components g of the logarithmic stress by using the stress: strain
relations (3). By use ol egn (13) the logarithmic stress is transtormed to the Cauchy stress
g

(5) Applyv the principle of virtual work in the current configuration —using *~'T and
"G [eqn (18)] in order to derive the appropriate linite clement matrices for the cal-
culation of the equivalent nodal force vectors,

(6) If desired. the tangential element stifiness s assembled over the element’s inte-
gration points by using the tangential clasto-plastic matrix—the symmetric derivative of
eqn (3) with the plasuc flow " inserted - and transforming it. via egns (7) and (15). to the
current configuration x where the principle of virtual work is applied.

SOAPPLICATIONS

The logarithmic strain space description has successfully been applied in the finite
element programs AutoForm and Pafix. which have been presented by Heiduschke er al.
(1991) and Anderheggen er al. (1994):

AutoForm s a special-purpose program for simulating the sheet metal forming process.
It is based on an mplicit formulation of the static nodal equilibrium and requires the
solution of a global system matrix. Due to the two-dimensional shape of sheet metal. a
decoupling into stretching and bending is pertormed tor the system solution. which is then
much better conditioned than without the decoupling. The sheet metal is modelled by plane
triangular elements with three nodes. which may be stacked in layers. In critical areas the
element mesh is automatically refined by recursively subdividing one triangle into four
similar triangles. Typical simulation results ot Autolorm are given in Figs 7 and &, where
the initial and final shape with the finite element mesh of a car door are shown. The two
door handle recesses are modelled in order to study two variants in one simulation. The
magnitudes of the strains encountered are moderate.

Pafix is a special purpose program for simubating the penctration of a metal nail into
a metal substratum. Tt s based on w dynanue nodal equihbrium which takes into account
inertia effects and. hence. wave propagation. 1is implemented using an explicit time
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Fig. 9. Metul nail with tophat penetrating a metal substratum.

integration scheme so that a solution of the global system matrix is not required. Further-
more. rotational symmetry of the nail. the substratum and all other components, e.g.
tophats, is assumed. Typical simulation results of Patix are depicted in Fig. 9, where the
initial configuration of the nail, tophat and substratum and the penetrated nail are shown.
The magnitudes of the strains encountered are large. especially nearby the axis of rotational
symmetry.

6. CONCLUSIONS

The presented description of an elasto-plastic continuum undergoing finite defor-
mation and its implementation into finite element codes is based on the logarithmic strain
space with respect to the reference configuration x,. The material is therefore described
with respect to its reference configuration x,—-it is a so-called “total Lagrangian material
description™. The time integration of the flow rule and the hardening law is performed
directly in the logarithmic strain space and it is based on the total strain, not its increment.
The plastic deformation is also described by the logarithmic strain &°, which is a physically
well-defined measure.

In contrast to the above, the so-called “upduted Lagrangian description™ is an
incremental formulation which is based on the current configuration £ and which uses co-
rotated rates of second order tensors. In particular the (somehow co-rotationally) integrated
components of plastic strain rates cannot be the components of the logarithmic plastic
strain tensors &” or &, as shown by the comparison presented in Section 2 (see Figs 3 and
5). If the so-called midpoint strain increment of Hughes (1984) is used, which is defined
with respect to the middle of the time (or load) step. then the strain is defined in space and
by its (time) increment: but strains are generally defined only with respect to space and
should be independent of the (time) increment!

Furthermore, in the so-called “updated Lagrangian description”, deformation-induced
anisotropy and material anisotropy are mixed. Consider. for example, a laminate which
undergoes the homogeneous finite deformation depicted in Fig. 10. If the material is

reference current ~
configuration K configuration ¥

homogeneou.

deformation

Fig 10 Homogeneous finite deformation of a laminate.
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described with respect to the reference configuration x,, its behaviour is orthotropic; if the
material is described with respect to the current configuration x its behaviour is no longer
orthotropic. but fully anisotropic. In ¥ there are no longer any orthogonal principal material
directions and hence the influences of deformation and material behaviour on the anisotropy
are mixed.

The description presented here does not exhibit the problems of the updated descrip-
tions, namely the mixture of deformation-induced and material anisotropy and the rates
and their respective integration. because the description is based on the reference con-
figuration r,, and it uses the total strain in the time-discrete strain space and not the strain
increment. Furthermore. the use of the logarithmic strains enables an additive decoupling
of finite dilatation and distortion, even though the evaluation of the components of ¢, (and
B) involves a transformation to principal axes and back again. which numerically requires
some effort. As outlined in the present work we describe the plasticity and integrate the
plastic rate in the logarithmic strain space, and we therefore do not need any stresses, which
are dependent variables in a strain space setting.

Finally, even though we do not use the additive split (4) of the rate of deformation
tensor D or of the according the back-rotated rate D in our considerations. eqn (4) may be
based on the additive split of the stress power (1) [see also Nemat-Nasser (1982)] by defining
the plastic and elastic parts of D and D via

D" = RD'R" and D' = xé".

D = RD'R' and D = a(i—#&),

respectively. in contrast to Lee (1981). where the elastic and plastic parts of the rate of
deformation tensors are defined via the not unique multiplicative elasto-plastic decompo-
sition of the deformation gradient (5). which is not additively decoupled—as indicated by
egn (2.17) of Lee (1981).
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APPENDIX

Anillustration of 4 constitutive algorithm based on a strain space description is presented for isotropic elasto-
plasticity with a yield (or loading) function of von Mises type, an associated flow rule, isotropic hardening and
isotropic elasticity [see Heiduschke (1989)]. The hardening behaviour is specified by the piecewise linear hardening
function of Fig. Al. where ¢ denotes the equivalent stress and &" the equivalent plastic strain. For isotropic elasto—
plasticity we use the equivalent plastic strain 2° as the independent hardening parameter instead of k, which has
been used in Section 3 for the general description. The structogram of the plasticity algorithm is depicted in Fig.
A2. In the algorithm we use deviators of the logarithmic strain tensors ¢ and ¢°. The traces and deviators of the
logarithmic strain tensors are measures of finite dilatation and finite distortion, respectively. They are independent
in the sense ¢ ¢, = 0. when denoting the spherical part of a tensor ¢ by

» I
& = il

According 1o the low rule the plastic strain increment is deviatoric, as it is proportional to a deviator, and so is
its time integral. the plastic strain ¢ = ¢". Hence, the incompressibility condition of finite plastic deformation
el = 0 1s fulfilled. In the structogram of Fig. A2 we use the tensor norm, defined in the Notation, and the shear
modulus

where Young's modulus 1s denoted by £ and Poisson’s ratio by v. The if-block describes the yield condition, w > 1
corresponds to elasticity (including unloading and neutral loading) and w < | to plasticity. If plasticity occurs,
the steps of the blocks which are marked by an (R) in the lower right corner must be repeated and properly
corrected until the equivalent plastic strain "*'£" is in the current hardening range. From the hardening parameter

o = Tkl = Ok
&

§=0

Fig. Al. The piecewise linear hardening function #(¢") and the hardening slope 4, from a tensile
test.
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discretized rate form in strain space
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Fres A2 Suructogram of astrain space algorithm for isotropic clasto-plastic constitutive equations
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hasically 4 measure tor the radius of the von Mises evlinder in principal strain space.
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